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Based on the additive fuzzy electron density fragmentation principle introdilced earlier 
within the ab initio Hartree-Fock quantum chemical computational framework, two new meth- 
ods are introduced for the construction of geometry-adjustable, ab initio quality macromolecu- 
lar electron densities. Both methods are designed for the computation of ab initio quality 
electron densities and other properties for macromolecules of arbitrary reference nuclear geom- 
etry, as well as for the rapid computation of approximate electron densities and other molecular 
properties for nuclear geometries slightly distorted with respect to the reference geometry. 
This latter feature is expected to improve the description of some of the vibrational and 
dynamic properties of macromolecules. The first of the two techniques, the Adjustable Local 
Density Assembler, or ALDA method, generates geometry-adjusted macromolecular electron 
densities directly, using Mulliken-Mezey fragment density matrices, basis set information, 
and nuclear coordinates. The method requires an ALDA fragment electron density matrix 
database. The second technique, the Adjustable Density Matrix Assembler or ADMA method, 
is introduced for the generation ofab initio quality approximate density matrices for macromo- 
lecules. The method assembles Mulliken-Mezey fragment density matrices designed to fulfill a 
macromolecular compatibility condition. The ADMA method generates macromolecular den- 
sity matrices without requiring the computation of a macromolecular wavefunction. The 
ADMA method allows one to apply most of the density matrix techniques of conventional 
quantum chemistry to macromolecules such as proteins. 

1. I n t r o d u c t i o n  

C o n v e n t i o n a l  app l i ca t ions  o f  the H a r t r e e - F o c k - R o o t h a a n - H a l l  m o lecu l a r  orbi -  
ta l  m e t h o d s  [1-4] and  m o r e  a d v a n c e d  techniques  based  on  t h e m  are  no t  ideal ly  sui- 
ted  fo r  the s tudy  o f  mac romolecu l e s .  Wi thou t  special se lect ion o f  the non-  
negl igible  m o l e c u l a r  in tegrals  ar is ing in the di rect  app l i ca t ion  o f  the  m o l e c u l a r  
o rb i t a l  m e t h o d o l o g y  wi th in  the L C A O  f r a m e w o r k ,  the c o m p u t a t i o n a l  co m p lex i t y  
fo r  large  molecu les  grows wi th  the fou r th  p o w e r  o f  the n u m b e r  o f  A O  basis func-  
t ions.  W h e r e a s  wi th  jud ic ious  select ion o f  integrals  an d  o the r  i m p r o v e m e n t s  the 
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fourth power dependence can be reduced, nevertheless, a conventional ab initio 
LCAO computation for a protein is not possible with the supercomputer hardware 
of today. 

One of the motivating factors in the recent development of macromolecular 
quantum chemical approaches has been the need for reliable local shape analysis 
and local similarity measures suitable for the quantification of the similarities of 
local regions of molecules. For small molecules, the global similarity measures 
based on the Quantum Similarity Measure techniques of Carb6 [5-11], the related 
similarity indices of Richards [12-14 ], the Fourier analysis methods of Bywater 
[15,16], the momentum space electron density analysis of Cooper and Allan [17,18], 
the method of Cioslowski [19-21] and the algebraic-topological Shape Group 
Method of Mezey [22-28] provide the basis for a variety of computational 
approaches. The local similarity measures based on the algebraic shape groups [22- 
25], as applied for electron density fragments, complement the quantum similarity 
measures proposed by Carb6 [5-11]. However, until recently, the local similarity 
analysis of macromolecules has been hampered by the high degree of complexity 
and the associated difficulties involved in the conventional computation of reason- 
ably accurate macromolecular electron densities. 

A natural approach to the treatment of complex problems involves two steps: 
(i) the decomposition of the problem into smaller ones which can be solved, (ii) fol- 
lowed by an assembly of the partial solutions into a global solution of the original 
problem. The importance of this general principle for the quantum chemical 
description of macromolecules has been recognized early, and a variety of compu- 
tational approaches have been proposed following the general scheme. One early 
approach of Christoffersen and Maggiora [29-31] was based on linear combina- 
tions of fragment orbitals where the approximations of the MOs and total energies 
of large systems were obtained within a framework based on orbitals of smaller 
molecular fragments. 

The general principle of decomposition followed by an additive assembly of 
fuzzy molecular components appears to hold the key to macromolecular quantum 
chemistry. In this contribution we describe two new methods for the construction 
of macromolecular representations of electronic densities, based on mutually inter- 
penetrating, fuzzy electron density fragments. The relevant background and ear- 
lier, related approaches are briefly reviewed below. 

Applying a fuzzy decomposition method to molecular electron densities and 
constructing representations of fuzzy molecular fragments have been proposed as 
tools for local shape analysis of large molecules [32]. In this scheme, mutually inter- 
penetrating isoproperty surfaces define truncation patterns that can be used for 
both the definition of molecular fragments and for the actual shape analysis of the 
fuzzy electron density of such fragments. For detailed shape analysis of both com- 
plete molecules and molecular fragments, the Shape Group Methods have been 
used [22-28]. Another related technique is the Density Domain approach, pro- 
posed for the study of fuzzy, mutually interpenetrating molecular electron density 
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fragments within molecules, where the "corresponding concept of chemical bond- 
ing is three-dimensional and refers to parts of the molecular body" [33]. One of the 
goals of the local shape analysis of molecular electron density fragments was the de- 
velopment of molecular similarity measures. High degree of similarity between 
local, fuzzy electron density domains in different molecules indicate similar chem- 
ical properties [34], and also serve as justification [35] for using local, fuzzy, 
mutually interpenetrating electron density fragments for the construction of elec- 
tron densities for large molecules. 

Recently, an independent, density functional approach has been proposed by 
Yang [36,37] for a fuzzy fragmentation of electron densities of large molecules, 
where local Hamiltonians and local electron density contributions are defined 
within an iterative scheme. Mutual compatibility between fragment densities 
within a given molecular environment and self-consistency between the electron 
density fragments and the local potential needed for their determination require an 
iterative solution. 

The earlier fuzzy electron density fragment models of the Density Domain [33] 
and fragment shape analysis [32] approaches were formulated within the Hartree- 
Fock-Roothaan-Hall LCAO molecular orbital ab initio framework. Several meth- 
ods were proposed based on this fuzzy fragment model; the essence of these tech- 
niques can be described using the conventional density matrix approach. These 
MO-based, additive, fuzzy density fragmentation methods avoid artificial frag- 
ment boundaries and provide local molecular fragments fully analogous to complete 
molecules. These techniques allow the direct application of rigorous shape analysis 
methods, such as the Shape Group Methods [22-28], developed for complete mole- 
cules and suggested for molecular fragments [32,33]. 

Take a conventional Hartree-Fock-Roothaan-Hall SCF LCAO ab initio repre- 
sentation of a molecular wavefunction with respect to some fixed nuclear arrange- 
ment K. The electronic density p(r) of the molecule, a function of the three- 
dimensional position variable r, is defined in terms of a set of n atomic orbitals 
~0i(r), i -- 1,2, . . . ,  n. The n × n dimensional density matrix P can be determined 
using the coefficients of atomic orbitals in the occupied molecular orbitals, and the 
electronic density p(r) of the molecule can be written as 

n n 

p(r) = ~ ~ Pij~oi(r)qoj(r ) . (1) 
i=1 j = l  

The electronic charge cloud p(r) provides a detailed representation of the shape 
of the fuzzy "body" of the molecule. It is natural to require that the local shape 
properties of molecular fragments are also described within the same framework. 
Whereas the resulting fuzzy density fragments usually do not exist as independent 
entities, nevertheless, the consistency of complete molecule and molecule frag- 
ment representations is advantageous, since identical shape analysis methods are 
applicable. 
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For the purposes of diagnosing the distorting effects of molecular surroundings 
on the electronic density within a given molecular moiety, a non-additive, fuzzy 
"pseudo-density" was proposed by Walker [38]. The "pseudo-densities" assigned 
to a given collection s of atomic nuclei present in different molecules can be com- 
pared and the influence of the different molecular surroundings can be diagnosed. 
The pseudo-density matrix ,ps of a formal molecular moiety containing a subset s 
of the nuclei of a molecule is defined by 

*P'~ij = eij  if AO ~oi(r) or  ~j-(r) is centered on a nucleus 
that belongs to the subset s, 

= 0 otherwise. (2) 

The resulting pseudo-density *p~(r) for the formal molecular moiety involving 
the subset s of the nuclei is calculated as 

n n 

*pS(r) = ~ ~ */~jqo/(r)qoj(r). (3) 
i=1 j = l  

Walker's pseudo-density *y(r) of a formal molecular moiety involves an 
enhanced contribution from the surroundings of the local molecular neighbor- 
hood, and it is a sensitive diagnostic tool for the detection of shape differences 
induced by conformational or other changes at different locations within the mole- 
cules [38]. The pseudo-density *pS(r) exaggerates the shape differences and *pS(r) is 
distorted when compared to the actual local shape of the molecule; nevertheless, 
the detection of shape changes is enhanced. These pseudo-densities are not additive 
and are not intended for the local description of the actual shapes of molecules; if 
pseudo-densities for several nuclear families s of a given molecule are determined, 
then these pseudo-densities *pS(r) do not add up to the molecular density. Their role 
is in the diagnosis of shape changes. 

It is possible, however, to define additive fuzzy density contributions to the 
molecular electron density which are representatives of local molecular shapes and, 
by their additivity, are also suitable for the construction of ab initio quality electron 
densities for large molecules [38--46]. 

A family of methods designed for these tasks is based on the additive fuzzy den- 
sityfragmentation (AFDF) principle of Mezey [27,28,39]. Both additivity and fuz- 
ziness appear essential. Electron densities of complete molecules have no 
discontinuous features, they have no formal boundary surfaces; similarly, the addi- 
tive fuzzy electron density fragments have no discontinuous features or boundary 
surfaces. The additive, fuzzy electron density fragmentation methods are moti- 
vated by a preference for a choice of representations of molecular fragments which 
are fully analogous with the representations of complete molecules [27,28]. These 
methods are less sensitive for diagnostic purposes than the pseudo-density techni- 
que of Walker, however, they provide faithful shape representations and also serve 
as the basis for building ab initio quality electron densities for large molecules. 
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The simplest implementation of the additive fuzzy electron density fragmenta- 
tion principle for actual density fragmentation, the Mulliken-Mezey method, was 
proposed by the author, however, its origins can be found in Mulliken's population 
analysis [47,48]. This scheme can be regarded as an "atom-group population anal- 
ysis without integration". Although more advanced AFDF methods have also 
been developed [27,28], the Mulliken-Mezey scheme is sufficient to provide ab initio 
quality results. Formulated within the framework of the Hartree-Fock- 
Roothaan-Hall molecular orbital ab initio method, the additive fuzzy fragmenta- 
tion method was first implemented as a tool for building electron densities from 
fragment densities [39]; generalized versions of this scheme are described in refs. 
[27,28]. 

The Mulliken-Mezey scheme is the basis of the Molecular Electron Density 
Lego Assembler (MEDLA) method of Walker and Mezey [38,39,40-43], as well as 
for the Adjustable Local Density Assembler (ALDA) and the Adjustable Density 
Matrix Assembler (ADMA) methods of Mezey [44-46]. The MEDLA method has 
provided the first possibility for the calculation of ab initio quality electron densities 
for proteins [38,41,42]. The ALDA method [44,46] generates macromolecular elec- 
tron densities that can be adjusted for small nuclear geometry changes, whereas 
the ADMA method [45,46] generates macromolecular density matrices, suitable 
for the computation of macromolecular electron densities as well as other molec- 
ular properties. 

According to this fragmentation scheme, the set of nuclei of a molecule M is 
divided into m mutually exclusive groups, denoted by 

f~ , f : , . . .  ,A , . . . f ro .  (4) 

These nuclear families serve as AO reference locations when generating the cor- 
responding m density fragments, 

F 1 ,  F 2  , . . . , F k  , . . . F m  , (5) 

of fragmen t density functions 

pX (r), p2(r) , . . . ,  pk(r), . . ,  pm(r), (6) 

defined in terms of the AO set of the molecule M and the family of fragment density 
matrices 

p1, p2 . . . ,  p k , . . ,  pro, (7) 

respectively. 
An additive fuzzy density fragment, AFDF pk(r) of the electron density p(r) of 

molecule M is specified by an arbitrary subset k of nuclei and their "share" pK of 
the density matrix P of the molecule. There is no inherent restriction on the choices 
of nuclear families; in particular, a fuzzy density fragment pk(r) does not have to 
refer to a set of nuclei which are interrelated by formal bonds. In practice, however, 
it is advantageous to select nuclear families where the nuclei within a family are 
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near one another. Based on the simplest version of the additive fuzzy fragmentation 
method, the kth fuzzy electron density fragment pk(r) is calculated in terms of 
Mezey's additive fragment density matrix, AFD M pk, defined as follows: 

= P/j if both qoi(r) and ¢pj(r) are hO ' s  centered 
on nuclei of the kth fragment, 

= 0.5P O. if only one of ~i(r) and ~j(r) is centered 
on a nucleus of fragment k, 

= 0 otherwise. (8) 

In this definition the motivating influence of Mulliken's population analysis 
method is clearly recognizable. 

Both the density matrix P of the complete molecule, and the additive fragment 
density matrix, AFDM pk of the kth fragment have the same n x n dimensions. 

In terms of the full AO set of the molecule and the fragment density matrix pk, 
the electron density of Mezey's kth additive fuzzy density fragment, AFDF pk(r) is 
defined as 

n n 

pk(r) = E E PiJ ~i(r)q°j(r) " (9) 
i=1 j=l 

If the nuclear familiesfl,f2, • • .,fk . . . .  fm are mutually exclusive, and if they col- 
lectively contain all the nuclei of molecule M, then eq. (8) defining the matrix ele- 
ments P~. implies that the sum of the fragment density matrices pk is equal to the 
density matrix P of molecule M: 

m 

P i / :  EP~0. (10) 
k=l 

and 
m 

V = E P  k . (11) 
k=l 

That is, these fragment density matrices are additive. Furthermore, the linearity 
of the electron density expressions (1) and (9) in the matrix elements Ply and P/~ of 
the molecular density matrix P and fragment density matrices pk implies that the 
sum of fragment densities pk(r) is equal to the density p(r) of molecule M: 

m 

p(r) = ~ p k ( r ) .  (12) 
k=l 

Consequently, at any given ab initio HF-LCAO level, the Mulliken-Mezey elec- 
tron density decomposition scheme is an exactly additive, fuzzy electron density 
fragmentation scheme. 

Whereas the additive fuzzy density fragmentation scheme and its generalized 
versions [27,28] provide new approaches to local shape analysis [46], the scheme 
has been used mostly in new algorithms designed for building reasonably accurate 
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electron densities for large molecules. For many of these large molecules, a conven- 
tional ab initio electron density calculation is impossible at present using current 
computer hardware. One important feature of the additive fuzzy density fragmen- 
tation scheme is the fact that building macromolecular electron densities from 
such fragments requires computational effort that grows only linearly with molec- 
ular size. This is an important advantage over more conventional quantum chem- 
ical methods, which have cubic or quartic size dependence. 

The Mulliken-Mezey additive fuzzy electron density fragmentation scheme, 
eqs. (8)-(12), is the basis of the Molecular Electron Density Lego Assembler 
(MEDLA) method of Walker and Mezey [39,40]. This method is the simplest of the 
techniques designed to build ab initio quality electron densities for large "target" 
molecules from "custom-made" fragments obtained from ab initio HF-LCAO elec- 
tron density calculations for smaller "parent" molecules, M1, M2, ..., Mk, ... 
Mm, artificially distorted to match the local nuclear arrangement and surroundings 
in the target molecule. 

The MEDLA technique uses a numerical electron density MEDLA databank, 
containing pre-calculated electron density fragments obtained from calculations of 
smaller "parent" molecules containing the "custom-made" nuclear geometry 
required for the fragment and a sufficiently large molecular neighborhood sur- 
rounding these nuclei, ensuring that the local interactions affecting the fragment 
within the target molecule are well reproduced within the smaller parent molecule. 
For example, an NH2 group may occur with many different nuclear geometries 
and within many different local surroundings; accordingly, the fragment density of 
the NH2 group is stored in several "custom-made" versions in the MEDLA data- 
base, each obtained from a different parent molecule. In the MEDLA database 
used for the first ab initio quality electron density calculations for proteins 
[38,41,42], each fuzzy MEDLA fragment has been previously obtained from a 6- 
31G** ab initio calculation for a small, "custom-made" parent molecule. Detailed 
tests have shown that the MEDLA electron densities are more accurate than the 
standard 3-21G ab initio results (using the 6-31G** basis set results as benchmark), 
and are virtually indistinguishable from the results of standard ab initio 6-31G** 
ab initio calculations. The additive, fuzzy electron density fragmentation method, 
as implemented within the Walker-Mezey MEDLA scheme, generates ab initio 
quality electron densities for macromolecules. 

2. The adjustable local density assembler (ALDA)  method for the 
computat ion o f  geometry-adjusted macromolecular electron densities 

The additive fuzzy electron density fragmentation method, in particular, its sim- 
plest realization, the Mulliken-Mezey fragmentation scheme given by eqs. (8)- 
(12), can be used for the computation of macromolecular electron densities without 
relying on a numerical electron density fragment database. 
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A direct application of the additive fuzzy density fragmentation (AFDF) princi- 
ple is the basis of the Adjustable Local Density Assembler (ALDA) method 
[44,46]. The AFDF scheme is used only to generate the fragment density matrices 
AFDM, and the actual fragment density contributions are computed only when 
they are needed. No numerical electron density database is generated, hence, there 
is no need for the storage of electron density values at several million grid points 
for each fragment. Instead, the ALDA method uses a much smaller ALDA data- 
base that stores the actual fragment density matrix elements for each AFDM pk, 
as well as the associated nuclear geometry and basis set information. Evidently, 
this requires much less memory than a MEDLA database generating comparable 
electron densities. 

The actual calculation of ALDA electron densities for a macromolecule requires 
the evaluation of the sum of eq. (9) for each fragment, AFDF pk(r). In principle, 
this evaluation is required for each point r of the space for the given target molecule, 
however, the fragment densities fall off rapidly with the distance from the nearest 
nucleus of the nuclear familyfk. Consequently, in practice, a cutoff for density con- 
tributions implies a distance cutoff, similar to that used in the construction of the 
MEDLA fragments. That is, the fragment densities are generated "on the spot", 
for each location within the target molecule, using fragment density matrix infor- 
mation and local basis set and nuclear geometry information, all stored in the 
ALDA databank. 

The fragment densities are added up at any desired set of grid points according 
to eq. (12), resulting in the ALDA electron density p(r) of the target macromole- 
cule. If the same set of grid points and the same set of parent molecules M1, M2,. . . ,  
Mk, . . .  Mm are used, then the ALDA method gives results exactly equivalent to 
the MEDLA results. 

In the ALDA method actual density evaluations are needed instead of just look- 
ing up numerical density values in a databank. Consequently, the ALDA method 
is slower than the MEDLA method. For each fragment, the time requirement of 
the ALDA method is quadratic with respect to the number of atomic orbitals con- 
tained in the parent molecule of the fragment. However, this number is limited by 
the feasible size of parent molecules, hence there is a constant upper bound for the 
actual time requirement for each fragment. The computer time requirement is 
determined by the number of fragments. The ALDA method is also linear in the 
number of fragments, consequently, the overall computer time requirement of the 
ALDA method grows linearly with the molecular size. 

The disadvantage of the slower, but still linear, performance of the ALDA 
method is compensated by several advantages. 

(a) The ALDA database is smaller then a MEDLA database, since the ALDA 
database contains only fragment density matrices, basis set information, and 
nuclear coordinates for the parent molecules MI, M2,.. . ,  Mk,. •. Mm. 

(b) In the computation of an ALDA numerical electron density of a target 
macromolecule, arbitrary grid types can be used, for example, one may use a more 
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detailed grid near the nuclei, or grids with enhanced resolution at some interesting 
location of the target molecule. This feature has importance in the calculation of 
molecular properties strongly dependent on the electron density near the nuclei, 
and in local shape analysis of active sites of macromolecules, such as the pocket 
regions of enzymes. 

(c) Another important advantage is a versatility in the rapid, approximate com- 
putation of macromolecular electron densities for nuclear arrangements slightly 
distorted with respect to the arrangements found in the ALDA database. Although 
it is always possible to generate a new, "custom-made" fragment density matrix 
for any given nuclear geometry, this step is not always required if an approximate 
electron density of the macromolecule is sufficient. If the nuclear geometry for a 
fragment already existing in the ALDA database is similar enough to the nuclear 
geometry of the required fragment, then a good approximation can be obtained 
using the same fragment density matrix. By simply changing the nuclear locations 
for the AO basis functions, and using the same fragment density matrix, small 
deviations from the exact fragment geometries can be treated in a simple and effi- 
cient manner. 

As long as the nuclear geometry variations are small, the electronic density "fol- 
lows" closely the nuclear geometry variations. The inherent nonlinearity of the 
density deformations associated with small changes in nuclear geometries is well 
represented by the ALDA method. For a small adjustment of the nuclear geometry, 
an important contribution to the corresponding adjustment of the electronic den- 
sity can be approximated by taking the same fragment density matrix, AFDM pk, 
and using it with the same set of atomic orbitals located at a set of slightly displaced 
nuclear locations. 

The ALDA method is suitable for the rapid calculation of approximate electron 
densities for any small range of nuclear geometries of a macromolecule. This 
adjustibility of the nuclear geometry appears useful in several applications. Small 
amplitude vibrations involve such minor geometry changes. Adjustable macromo- 
lecular electron densities are likely to be useful in the structure refinement process 
of X-ray structure determination. Another area is the study of protein folding pro- 
cesses. These processes usually involve large geometry changes, however, the 
ALDA method may provide a tool for breaking up such folding paths to segments 
where each segment can be treated using simple geometry adjusted ALDA electron 
densities. Some of the related applications of the ALDA method will be discussed 
elsewhere [49]. 

3. The adjustable density matrix assembler ( A D M A )  method for the 
generation ofmacromolecular  density matrices 

Various implementations of the additive fragment density matrix approach 
[27,28], including the simplest, Mulliken-Mezey scheme, eqs. (8) and (10), can also 
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be used for the generation of density matrices for the target macromolecules. A 
direct, algebraic application of the additive fuzzy electron density fragmentation 
principle, based on additive fragment density matrices, AFDMs, defined within a 
consistent framework of AO representations for the fragments, is the basis of a 
method for the construction of ab initio quality approximate density matrices for 
macromolecules. 

The approach taking advantage of this possibility offered by the fragmentation 
scheme is referred to as the Adjustable Density Matrix Assembler (ADMA) techni- 
que [45,46]. The ADMA technique provides a link between the additive fuzzy frag- 
mentation approach and mainstream quantum chemistry. If a macromolecular 
density matrix is available, then most of the routine quantum chemical computa- 
tional techniques, including expectation value computations for various property 
evaluations are applicable. 

The actual ADMA macromolecular density matrix constructed from the frag- 
ment density matrices represents the same level of accuracy as the MEDLA and 
ALDA methods. In particular, the ADMA method reproduces the effects of inter- 
actions between local fragment representations to the same level of accuracy as 
the MEDLA and ALDA methods. The ADMA density matrix technique also has 
provisions for the adjustability of the calculated electron density with respect to 
small nuclear geometry changes of the macromolecule, a feature similar to that of 
the ALDA method. 

The ADMA macromolecular density matrix P is obtained by combining appro- 
priately defined, mutually compatible, additive fragment density matrices (MC- 
AFDM) p k  Mutual compatibility involves two conditions: 

(a) AO basis set orientation constraints, 
(b) fragment choices fulfilling a compatible target - parent fragmentation condi- 

tion. 

The ADMA method uses a fragment density matrix database, similar to that of 
the ALDA method, however, these fragment density matrices fulfill the second of 
the above two compatibility conditions. By a suitable transformation, the fragment 
density matrices can always be converted to physically equivalent fragment density 
matrices defined with respect to AO basis sets fulfilling condition (a). 

3.1. BASIS SET ORIENTATION CONSTRAINT 

The compatibility between the atomic orbital basis functions of the fragment 
density matrices and those of the final, macromolecular density matrix is a natural 
requirement. The final, macromolecular density matrix must refer to a single 
(although rather large) set of basis orbitals. This condition requires that all the frag- 
ment density matrices should refer to local coordinate systems where the coordi- 
nate axes are oriented the same way as the reference axes of a common, 
macromolecular coordinate system. 
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If the fragment density matrices stored in the ADMA density matrix database 
refer to AO basis sets defined within local coordinate systems with different orienta- 
tions, then local coordinate transformations can be carried out on each fragment 
density matrix, changing the orientations of atomic orbitals to those in the com- 
mon, macromolecular coordinate system. 

Consider the kth fragment density matrix, obtained from an ab initio calculation 
for the parent molecule Mk within a local coordinate system. Vector qo (k) (r) repre- 
sents the set of atomic orbitals for the parent molecule Mk where the orientations of 
AOs are chosen with respect to this local coordinate system. Accordingly, the 
pk(~) notation is used for the kth fragment density matrix defined in the local coor- 
dinate system. Vector ~b (k) (r) represents the same sequence of atomic orbitals at 
the same nuclear centers in local coordinate systems with axes aligned with the axes 
of the common, macromolecular coordinate system. An orthogonal matrix trans- 
formation T (k) interrelates these two representations: 

~b (k) (r) = T (k) qo (k) (r).  (13) 

Matrix T (k) is block-diagonal, assembled from the one- dimensional identity ma- 
trix for each of the s-orbitals, the ordinary three-dimensional rotation matrix for 
each triple of p- orbitals, the standard five-dimensional conversion matrix for each 
set of five orthonormalized d-orbitals, the seven-dimensional conversion matrix 
for each set of seven orthonormalized f-orbitals, and so on. If non-orthonormal 
AOs, for example, sets of six non-orthonormal d-functions are used, then an appro- 
priately modified transformation matrix T (k) is used. 

A simple similarity transformation, 

p k  = T(k)pk(qo)T~(k)  , (14) 

is used to convert the local representation Pk(qo) of the kth fragment density matrix 
into the actual fragment density matrix pk used in the process of building the 
macromolecular ADMA density matrix P. 

3.2. C O M P A T I B L E  T A R G E T - P A R E N T  F R A G M E N T A T I O N  C O N D I T I O N  

The Mulliken-Mezey density matrix fragmentation scheme and the alternative, 
generalized schemes [27,28] are defined in terms of nuclear families jq, j~, . . . ,  fk, 
...fro. The A D M A  method uses a mutually consistent choice of nuclear familiesfk 
for the fragmentation of the large target molecule M and for the fragmentation of 
the parent molecules M1, ME,. . . ,  Mk, .. • M m  used to generate the fragment density 
matrices pk. 

The following condition must be fulfilled: 

I f  the nuclei o f  the target molecule M are classified into m families, then each 
parent molecule Mk may contain only complete nuclear families fie from the tar- 
getmolecule M. 



152 P. G. Mezey / Macromolcular density matrices and electron densities 

A parent molecule Mk either contains a given nuclear familyfk~ in full as part of 
the surroundings for the actual nuclear set fk of the fragment density matrix pk, 
or Mk does not contain any part of the nuclear familyfz. The only exception to this 
rule are some peripheral H nuclei (or, possibly other nuclei) used to tie off dangling 
bonds in parent molecule Mk, where these extra nuclei are at large distances from 
the actual nuclear setfk of the fragment density matrix pk. By chance, such a per- 
ipheral nucleus might also appear at the same location as a part of another nuclear 
family. 

In both the target molecule M and the parent molecule Mk, the nuclear family 
fk is usually surrounded by several other nuclear familiesfk,, where (within the Mul- 
liken-Mezey scheme) approximately half of the interaction components of electron 
densities associated with orbitals of these latter families, on the one hand, and 
with orbitals of the central familyfk of nuclei, on the other hand, are assigned to 
fragment Fk. 

As implied by the definition of matrix elements P~0, interaction matrix elements 
for orbital pairs associated with the nuclear family fk of the parent molecule Mk 
contribute fully to the kth fragment density matrix pk, generating the fragment 
density matrix elements ~ = Pi] where both cpi(r) and ~o](r) are AOs centered on 
nuclei of the nuclear familyfk. The additional nuclear familiesfz occurring in par- 
ent molecule Mk, the corresponding fragment density matrices Pz, and the electron 
density fragments associated with them have their own parent molecules Mz. 
Nevertheless, the consistency condition of the construction principle for building 
proper macromolecular density matrices requires that any such nuclear family fz 
appears in full or not at all within the surroundings of nuclear familyfk in any par- 
ent molecule Mk. 

The "dangling bonds", formally belonging to the peripheral nuclei of nuclear 
families fie representing surroundings for nuclear familyfk in the parent molecule 
Mk, are attached to H atoms, or, possibly, to other small functional groups. More 
complicated groups may be needed if conjugative or other interactions are to be 
extended beyond the usual "coordination shell" provided by the nuclear familiesfz 
surrounding the actual nuclear familyfk of the fragment density matrix pk. 

If the centrally located nuclear family fk of parent molecule Mk is surrounded 
by a sufficiently thick layer of additional nuclear familiesfz, then the additional H 
(or other) nuclei are positioned far from the nuclei of the actual familyfk, and the 
density matrix elements between the orbitals of these additional atoms and the 
orbitals centered on nuclei of central familyfk are negligibly small. Consequently, 
within the ADMA method only those density matrix elements P~ of each parent 
molecule Mk are involved in the construction of the final, macromolecular density 
matrix P, which 

(a) fulfill the selection condition in the defining equation (8) (or the alternative, 
more general conditions of refs. [27,28]) of fragment density matrix pk, and 

(b) do not involve the peripheral extra H (or other) nuclei of the parent molecules. 
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Evidently, such consistent choices of nuclear families fk and the corresponding 
choices of parent molecules Mk can always be obtained for any macromolecule 
M. 

3.3. THE M A I N  STEPS OF THE A D M A  M A C R O M O L E C U L A R  DENSITY MATRIX 

METHOD 

The application of the ADMA method for an actual macromolecule involves 
several steps, listed below. 

(i) Identify nuclear families jq, f2, ..., f/~, ...fro of the target macromolecule M, 
and denote the number of AOs in these families by 

nl,n2,...,nk,...nm, (15) 

respectively. Define 

no = 0, (16) 

and define an index 

k- I  

f ( k , i ) = i +  ~--~nv. (17) 
v=0 

Within the macromolecular density matrix P,f(k,  i) is the serial index assigned to 
basis orbital ~i(r) of nuclear familyfk. 

(ii) Unless appropriate fragment density matrices are already available in the 
ADMA database, define parent molecules M1, M2, . . ,  Mk, . . .  Mm.  Each parent 
molecule Mk contains the corresponding central nuclear family fk, additional 
nuclear familiesfie surrounding familyfk in a formal "coordination shell", as well 
as additional, peripheral nuclei attached to dangling bonds linked to some nuclei in 
familiesfz. The nuclear familiesfe and the associated AOs within this coordination 
shell have the role of reproducing all local interactions of the electron density domi- 
nated by nuclear familyfk with the surrounding electron density cloud within the 
target molecule. Note that a given nuclear familyf/~ occurs in precisely one parent 
molecule Mk as the central family, however, the same familyf~ may occur in several 
other parent molecules Mz as part of their "coordination shell", reproducing local 
interactions for the corresponding central nuclear familiesfk,. 

(iii) Introduce consistent labeling of nuclear families within the target macromo- 
lecule and the various parent molecules M1, ME,..., Mk, •.. Mm. 

For each pair (k,/c'), k, k: = 1,2, ..., m, define 

1 if nuclear familyfz contributes to parent molecule Mk, (18) 
c/ek = 0 otherwise, 

and set 
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COk = O, for each k = 1,2, ...,m. (19) 

(iv) Carry out ab initio computations for each parent molecule M~, M2, ..., Mk, 
. . .  M,,,, and determine the fragment density matrices P~, p2 . . . .  , p k , . . ,  pro, unless 
a suitable fragment density matrix is already available in the ADMA databank. 

(v) If required, transform the AO basis of each fragment density matrix pk to 
an AO basis defined with respect coordinate axes parallel to the axes of the com- 
mon, macromolecular coordinate system, using eq. (14) and the appropriate trans- 
formation matrix T (k) . 

(vi) If required, carry out permutations of the AO basis of each fragment density 
matrix pk and the corresponding row and column permutations of the fragment 
density matrix pk itself in order to generate a block structure for pk where 

(a) the blocks correspond to AOs associated to specific nuclear familiesf~, 
(b) within all fragment density matrices pk all blocks corresponding to a given 

nuclear familyfk, follow the same ordering of the AOs centered on the nuclei of 
familyfie, 

(c) the block-row and block-column indices in each fragment density matrix pk fol- 
low a monotonically increasing subsequence from the sequence of nuclear 
familiesfl,3~, • • . , fk , . . . f , , ,  of the target macromolecule M, and 

(d) the AOs centered on the additional nuclei used to "tie off" peripheral "dangling 
bonds" in each parent molecule Mk are listed at the end of the sequence of 
AOs for each fragment density matrix pk. 

Step (vi) may be rendered redundant by designing the parent molecule represen- 
tations in conformity with these conditions; if, however, the ADMA databank 
already contains a suitable fragment density matrix generated for a different but 
locally similar macromolecule, then step (vi) ensures that this fragment density 
matrix can be "recycled" and used again for the current calculation. 

(vii) Expand each fragment density matrix pk to a fragment density matrix 
pk(M) of the target macromolecule M, by inserting blank rows and blank columns 
of blocks corresponding to AO sets of all nuclear families f z ,  not contributing to 
the fragment density matrix pk. This is only a symbolic transformation, since in 
practice, a simple index transformation can be used to identify the x, y index pair of 
element Pxy of the macromolecular density matrix P where a given element ~ of 
a fragment density matrix pk contributes. 

Define the following quantity: 

t(k, kl, i) = clek i + ~ Cvknk . (20) 
~=0 

Index t(k, k ~, i) is the actual serial index of orbital qoi(r) of nuclear familyj~ in the 
fragment density matrix pk. 

In order to construct the macromolecular density matrix P, the transformed 
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row and column indices of each fragment density matrix pk  are determined and 
the corresponding matrix element is added to the appropriate matrix element of P, 
according to the following scheme: 

If 

t(k,l(, i)t(k,k",j) (: O, (21) 

then set 

P f ( Id,i),f (Id',j) = P f (Id,i) f (Id',j) "+" e~t( k,ld,i),t(k,ld',j) " (22) 

By carrying out this procedure for each nonzero element for each of the fragment 
density matrices P~, the corresponding ADMA density matrix P of the target 
macromolecule is obtained. 

An alternative description of the ADMA algorithm, given below, follows more 
closely the actual computational process. 

An individual AO ~o(r) can be assigned three indices, depending on the context. 
The notation ~Ob,le (r) indicates that this is the bth AO within the set 

riga {~oa,je (r)}a= 1 (23) 

of AOs associated with the nuclear familyfz. The notation qo~(r) can also be used 
for the same AO if it is thejth AO within the basis set 

k - r .  ~npk {q°i(, )~i=1 (24) 

used in the definition of the kth fragment density matrix pk. Here the number n~ 
of AOs involved in fragment density matrix Pkis calculated as 

m 

np~ = ~ Cleknle . (25) 
/ d = l  

The notation ~oy (r) is also used for the same AO if its serial index is y within the basis 
set 

{~Ox(r)}~= 1 (26) 

used in the definition of the macromolecular density matrix P. 
These indices are interrelated. If ~Oa,Z (r) = ~Ox (r), then index x can be determined 

from indices a and/d by 

/ d - I  

x =  x ( U , a , f ) = a +  ~-'~nb, (27) 
b = l  

where f  in the argument of index function x(ld, a,f)  indicates that indices/d and a 
originate from a nuclear family. For each index k of fragment density matrices pk, 
if ~ ( r )  = ~Ox(r), then index x can be determined from indices i and k by the follow- 
ing procedure. For all those nuclear familiesfie, for which 
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Cz,k¢O, (28) 

define 

k/t 

dk(U',i ) = i+ ZnbCbk,  (29) 
b=l 

k' = k/(i, k) = min{k": a2(k", i) < 0}, 

and 

(3o) 

ak(i) = a:k(k', i) + nk,. (31) 

Using the index function x(U, a,f) defined in eq. (27) and taking k' given in eq. 
(30), index x assigned to indices i and k is given by 

x = x(k, i, P) -- x(U, ak(i),f),  (32) 

where P in the argument of the index function x(k, i, P) indicates that indices k 
and i refer to a fragment density matrix. 

With these index assignments, the macromolecular density matrix P is obtained 
by identifying each nonzero element ~ of each fragment density matrix pk and 
by setting 

ex(k,i,P),y(k,j,P) = Px(k,i,P),y(k,j,P) -[- e~ij . (33) 

The ADMA algorithm described above generates a macromolecular density 
matrix P from fragment density matrices p1, p2, . . ,  pk, . . .  pm calculated for par- 
ent molecules M1, ME, ..., Mk, . . .  M,,, designed to fulfill the compatibility condi- 
tions with one another and with the macromolecule M. 

The ADMA macromolecular density matrix P and the macromolecular AO 
basis set ~x(r)x= 1,..n provide a detailed, ab initio quality quantum chemical descrip- 
tion of macromolecule M. In terms of this density matrix P, the macromolecular 
electron density can be computed using relation (1), and other molecular properties 
can also be evaluated using standard density matrix methodology [50]. 

Note that for each fragment density matrix pk the ranges of AO indices are lim- 
ited by the size of the AO basis set used in the ab initio calculation for the parent 
molecule Mk. Since this size itself is limited, the computer time requirement for the 
entire index reassignment and for the matrix element assignment procedure for 
each fragment density matrix to the macromolecular density matrix is bounded by 
a constant. Consequently, the overall time requirement of the ADMA computation 
scales linearly with the number of fragment density matrices, that is, with the size 
of the macromolecule. 

The negligible interaction matrix elements between AOs of the central nuclear 
familyfk and the peripheral AOs located at the additional nuclei beyond the "coor- 
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dination shell" in each parent molecule Mk are ignored within the ADMA scheme. 
These matrix elements belong to AO pairs separated by distances which are beyond 
the distance cutoff of the MEDLA numerical density fragments stored in the 
MEDLA database. Consequently, the ADMA macromolecular density matrix 
construction method reproduces the accuracy of the electron densities obtained 
with the MEDLA method, where the latter approach has been shown to generate 
ab initio quality electron densities. Consequently, the ADMA macromolecular 
density matrix construction method is suitable for the generation ofab initio quality 
electron densities. 

By selecting sufficiently large nuclear families and parent molecules with large 
enough "coordination shells", the accuracy of the ADMA method, with respect to 
a direct, traditional ab initio computation, is limited only by the feasibility of large 
parent molecule computations. The ADMA method is based on the Mulliken- 
Mezey fragmentation scheme or on more general related schemes [27,28], conse- 
quently, ADMA accounts for the interfragment interactions in a consistent way 
and the macromolecular density matrix P constructed by the ADMA method pro- 
vides a good approximation. However, if only small coordination shells are used 
in the parent molecules, and if the macromolecular density matrix is built from 
many fragment density matrices, then the neglect of the small "phantom" contribu- 
tions from the additional, peripheral H atomic orbitals and accumulated numerical 
errors may cause the constructed density matrix P to deviate slightly from the con- 
dition of perfect charge conservation and the condition ofidempotency. For proper 
charge conservation, the scaling method described in reference [38] can be applied 
directly on the density matrix P. Idempotency is the condition of projectors, where 
the projected image of a projected image remains the original projected image. 
Accurate density matrices must fulfill the condition ofidempotency: 

P .  P -- P .  (34) 

Here the product operation - is interpreted as the matrix product PSP where S is 
the overlap matrix for a given nonorthogonal AO basis. However, by a small mod- 
ification of the macromolecular density matrix P, the idempotency property can 
be restored. The idempotency condition is equivalent to requiring that a multidi- 
mensional vector is stretched to a point of a multidimensional unit sphere, that can 
be achieved by a simple transformation. Methods and numerical techniques for 
such transformations are discussed elsewhere [49]. 

Small nuclear geometry variations can be introduced in the same manner as it 
is done in the ALDA technique. The electronic density has maxima at the nuclei 
and the major effect of nuclear geometry variation on the electron density is domi- 
nated by the motion of the electronic density near the nuclei, essentially following 
the nuclear motion. If the geometry change is small, then an important contribution 
to the corresponding change in the electronic density can be obtained by taking 
the same macromolecular density matrix P obtained by the ADMA technique, and 
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using it with a new set of atomic orbitals located at a set of slightly displaced nuclear 
locations. 

Small nuclear geometry variations change the relative positions of the AOs, 
change their overlap matrix S, and introduce small changes in both the idempo- 
tency property of P and the calculated total charge. If required, these changes can 
be accounted for by readjusting the macromolecular density matrix P, using the 
same charge-scaling and idempotency-restoring procedure outlined above. 

The adjustability of the ADMA macromolecular density matrix P and the calcu- 
lated electronic density to accommodate small geometry variations is advanta- 
geous in approximate representations of small molecular distortions, such as small 
amplitude vibrations and other minor geometry changes. This is likely to find appli- 
cations in the structure refinement process of X-ray structure determination, in 
the study of minor conformational changes of polymers and protein folding 
processes. 

The A D M A  method can be regarded as a tool for obtaining ab initio quality 
density matrices P for large molecules M without first determining a wavefunction 
for M. Since within the Hartree-Fock framework the first-order density matrix P 
fully determines all higher-order density matrices, and expectation values for any 
one-electron and two-electron operators can be expressed in terms of the first- 
order and second-order density matrices [50], the ADMA method also provides a 
tool for calculating approximate expectation values for various macromolecular 
properties, including energy. In this context, the ADMA method extends the 
applicability of many quantum chemical computational techniques to macromole- 
cules. Some of the suggested applications of the ADMA method are discussed else- 
where [49]. 

3.4. EXAMPLE AND ILLUSTRATION OF THE COMPATIBILITY CONDITION OF THE 

A D M A  METHOD 

The compatibility condition for selecting nuclear families of fragments within a 
target macromolecule and a corresponding set of parent molecules is illustrated by 
a simple example. The nuclei of the formal "macromolecule" used in the example 
are classified into 16 families, 

f l , f2 , . . -  ,fk, • • .fl6. (35) 

Different nuclear families may contain different numbers of nuclei. 
The macromolecular density matrix P generated by the ADMA method is 

defined in terms of a set of atomic orbitals belonging to the nuclear families 1, 2, 3, 
..., m, where in the example, m = 16 was used. Within each nuclear family the 
ordering of atomic orbitals is fully specified, hence, by following the serial indices 
of the nuclear families, the entire set of atomic orbitals of the macromolecule is well 
ordered. 
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In order to simplify the visualization of the interactions between fragments, we 
consider a "macromolecule" rather "thin" along the z direction; note that the gen- 
eral case of more globular macromolecules can be treated the same way. The 
nuclear families arranged in any arbitrary way in three dimensions can always be 
assigned sequential numerical indices. Evidently, the interactions between frag- 
ments arranged in any arbitrary way in three dimensions can be represented by den- 
sity matrix blocks and elements arranged within a two-dimensional matrix. 

We assume that the 16 nuclear families of the "macromolecule" have a spatial 
arrangement approximately represented by the pattern 

I 2 3 4 

5 6 7 8 
9 10 11 12 (36) 

13 14 15 16 

Note that the nuclear arrangement is not assumed planar; pattern (36) merely indi- 
cates that there are strong interactions, for example, between the electron density 
clouds near the nuclei in family fl and those in family f2, but there is little or negligi- 
ble interaction between the electron density contributions near nuclei of family f5 
and near those of familyfl2. 

As an example, consider the construction of a fragment density matrix for the 
nuclear family f6. If the nuclear families are large enough, then it is sufficient to take 
a parent molecule M6 represented by the same arrangement of nuclear family f6 
and the corresponding nuclear arrangement of a "single layer deep .... coordination 
shell" generated by the additional nuclear familiesfk of serial numbers 1, 2, 3, 5, 
7, 9, 10, and 11, as shown by the following pattern, a sub-pattern of pattern (36): 

1 2 3 

5 6 7 (37) 

9 10 11 

The nuclear set of parent molecule M6 is completed by adding H nuclei (or, if 
needed, those of larger groups) to link up with the peripheral "dangling bonds" as- 
sociated with nuclear familiesfk of serial numbers 3, 7, 9, 10, and 11. In the actual 
example only these nuclear families, 3, 7, 9, 10, and 11, have neighboring families 
not included in the given parent molecule M6. If a conventional ab initio computa- 
tion is carried out for parent molecule M6, then the complete density matrix 
P(M6) of parent molecule M6 is determined. Based on the density matrix P(M6), 
the additive fragment density matrix (AFDM) p6 is determined, using eq.(8) or one 
of the alternative definitions [27,28]. This fragment density matrix p6 involves 
only those (possibly scaled) elements of P(Mr) which fall within the pattern of in- 
dex ranges of AOs of the nuclear families schematically given below by the fragment 
interaction pattern matrix F 6, using boldface number and asterisk: 
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1 

2 

3 

5 

6 * 

• 7 

:¢ 

(38) 

9 

10 

11 

Each symbol in this fragment interaction pattern matrix F 6 corresponds to a 
block of density matrix elements, where the row and column dimensions of each 
block depend on the number nk of atomic orbitals associated with the nuclear 
familyfk of the given serial index k specified along the diagonal. The atomic orbitals 
belonging to the extra H atoms are specified at the end of the orbital list of parent 
molecule M6. The orbitals on these H atoms have negligible interactions with the 
orbitals centered on the nuclei of the actual fragment, these extra orbitals do not 
contribute to the macromolecular density matrix P, and no corresponding columns 
and rows on the right hand side and at the bottom of the diagram are indicated. 

All those matrix elements of density matrix P(M6) which involve only atomic 
orbitals belonging to nuclear family f6 are included in full; their block is symbolized 
by the boldface number 6 in the diagram. Symbol * represents off- diagonal blocks 
of density matrix P (M6) for orbital pairs where in each pair only one orbital is cen- 
tered on a nucleus of family f6 and the other orbital belongs to another familyfk in 
the interacting "coordination-shell", where k is 1,2, 3, 5, 7, 9, 10, or 11. For all these 
off-diagonal blocks, each of the original matrix elements of P (M6) is scaled: if eq. 
(8) is applied, then each of these matrix elements is multiplied by a factor of 0.5; if 
one of the more general schemes [27,28] is used, then the appropriate multiplying 
factors are applied. 

Although the atomic orbitals centered on nuclei of family f7 contribute to the 
fragment density matrix p6, this involvement is restricted to a representation of 
approximately half of the local interfragment electron density interactions. For the 
construction of a fragment density matrix p7 for fragment 7, a different parent 
molecule, M7, is used. Parent molecule M7 is symbolically represented by a sub- 
pattern of pattern (36), as shown below: 

2 3 4 

6 7 8 (39) 

10 11 12 

The "coordination shell" in parent molecule M7 is generated by the nuclear 
familiesfk of serial numbers 2, 3, 4, 6, 8, 10, 11, and 12. The"dangling bonds" of the 
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peripheral nuclei of these families are linked to extra H atoms (or, if needed, to lar- 
ger groups). These extra nuclei are located far from the central nuclear family f7, 
therefore, the interaction density matrix elements between orbitals of family f7 and 
the orbitals centered on the extra, peripheral nuclei are assumed to be negligible. 
The density matrix P(MT) of the parent molecule M7 is used for the construction of 
the fragment density matrix p7 according to eq.(8) or one of the alternative defini- 
tions [27,28], that can be represented symbolically by the following fragment inter- 
action pattern matrix F 7: 

2 • 

3 • 

4 • 

6 • 

• • • • 7 • • • • (40) 

• 8 

• 10 

• 11 

• 12 

The interaction matrix elements between orbitals centered on nuclei in family f6 
and family f7 occur only in the two parent molecules M6 and M7 , as indicated in 
the two fragment interaction pattern matrices (38) and (40), respectively. Accord- 
ingly, these interfragment interactions are represented only in the corresponding 
two fragment density matrices, p6 and pT. 

There are two main strategies to ensure a high level of incorporation of interfrag- 
ment interactions in the final macromolecular density matrix P. 

According to the first, simple approach, one may select large nuclear familiesfk 
for each fragment. The compatibility requirement of the fragmentation used in the 
A D M A  method implies that the fragments representing the "coordination shell" in 
each of the parent molecules are also large. Consequently, within each of the frag- 
ment density matrices pk the interactions from a large part of the actual target mole- 
cule M are well represented, and a faithful representation of the macromolecular 
density matrix P is obtained when one combines the fragment density matrices pk. 

According to the second approach, a larger number of smaller nuclear families 
are used, where each parent molecule Mk involves a large number of such nuclear 
families. If a high level of accuracy is required for the representation of interfrag- 
ment interactions in a macromolecule M, then relatively small nuclear families are 
still applicable for each fragment, if the formal "coordination-shell" in each parent 
molecule Mk involves two (or more) layers of nuclear families surrounding the cen- 
tral nuclear familyfk. If the "coordination shell" involves several layers of nuclear 
families, a construction method similar to that described for the simplest, single- 
layer "coordination-shell" applies. 
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1 

5 

9 

13 

and 

1 

5 

As an illustration, we shall consider the same "macromolecule" M, with the 
modification of taking two layers of nuclear families for a "coordination shell" in 
each of the parent molecules. As examples, the corresponding patterns of parent 
molecules M5 and M9, the associated fragment interaction pattern matrices F 5 and 
F 9, and the respective fragment density matrices p5 and p9 of nuclear familiesf5 
and f9 are specified below. 

The approximate arrangements of nuclear families in parent molecules M5 and 
M9 are 

2 3 

6 7 
10 11 (41) 

14 15 

2 3 

6 7 
9 10 11 (42) 

13 14 15 

respectively, where the "dangling bonds" associated with the peripheral nuclei of 
familiesfk of indices 3, 7, 11, and 15 are linked to additional H atoms. Due to the 
simplicity of the target "macromolecule" M, the same parent molecule, Ms = M9, 
can be used for both fragment density matrices p5 and p9. The block-pattern of 
the fragment density matrix pS is specified by the respective fragment interaction 
pattern matrix F 5 

1 • 

2 • 

3 • 

• * :¢ 5 

6 

7 
9 (43) 

10 

11 

13 

14 

15 
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The fragment interaction pattern matrix F9describes the corresponding block 
pattern of the fragment density matrix p9: 

2 

3 

:¢ :¢ :¢ 

5 * 

6 * 

7 * 

• * * 9 * * * * * 

• 10 

• 11 

• 13 

• 14 

• 15 

(44) 

In the process of combining the fragment density matrices pk when building 
the macromolecular density matrix P, blank rows and columns of zero blocks are 
included for those nuclear families which do not contribute to the parent molecule 
Mk of the given fragment density matrix pk. 

In the example, if single-layer coordination shells are used for each parent mole- 
cule Mk, then the fragment density matrices p6 and p7 are transformed by inserting 
rows and columns of zero blocks corresponding to atomic orbitals associated with 
the "non-participating" nuclear families of indices 4, 8, 12, 13, 14, 15, and 16 for 
p6 and 1, 5, 9, 13, 14, 15, and 16, for pT, respectively. Similarly, if two layers of 
nuclear families are taken for a coordination shell in each parent molecule Mk, then 
the corresponding double-layer fragment density matrix p5 is transformed by 
inserting rows and columns of zero blocks corresponding to atomic orbitals asso- 
ciated with the "non-participating" nuclear families of indices 4, 8, 12, and 16. In 
the given example, both nuclear familiesf5 and f9 are located within the same per- 
ipheral region of the "macromolecule" M, and by coincidence, the transformation 
of the corresponding double-layer fragment density matrix p9 requires the inser- 
tion of rows and columns of zero blocks corresponding to atomic orbitals asso- 
ciated with the same set of nuclear families, 4, 8, 12, and 16. 

The inclusion of rows and columns of zero blocks into the fragment density 
matrices pkcorresponds to the inclusion of blank rows and columns into the respec- 
tive fragment interaction pattern matrices F k. The resulting density matrix block 
patterns are called the augmented fragment interaction pattern matrices. 

The macromolecular density matrix P can be assembled from fragment density 
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matrices pk  appropriate ly  augmented with rows and columns of  zero blocks. This 
construct ion is symbolized by a composite fragment interaction pattern matrix F 
obtained as the sum of  the augmented interaction pat tern matrices of  all the indivi- 
dual f ragment  density matrices p k  

In the example of  the single-layer coordinat ion shell, the composi te  fragment  
interaction pat tern matrix F for the "macromolecular"  density matrix P has the 
following form: 

1 * * * 

• 2 • • • • 

• 3 • • • • 

• 4 • • 

• * 5 * * * 

• • • • 6 • • • • 

• • • • 7 • • • • 

• * * 8 * * 

• • 9 • • 

• • • • 10 • • 

• • • • 11 • 

• • • 12 

• • 13 

14 

15 • 

• 16 

(45) 

Each block of  fragment density matrix elements along the diagonal o f  this com- 
posite fragment  interaction pat tern matrix F originates f rom the fragment  density 
matrix pk  of  the serial index k indicated in the diagonal o f  F .  By contrast ,  there 
are two contr ibut ions to each block represented by an off-diagonal asterisk in this 
composi te  fragment  interaction pat tern matrix F.  If  the asterisk is located in row i 
and column j ,  then the off-diagonal blocks of  the ith a n d j t h  augmented fragment  
density matrices p i  and PJ with contr ibutions from atomic orbitals belonging to 
the cor respondingj th  and ith nuclear families are added together to form the corre- 
sponding off-diagonal block of  the final, macromolecular  density matrix P. 

I f  each coordinat ion shell involves two layers of  nuclear families, as il lustrated 
by pat terns (43) and (44) for the corresponding fragment density matrices p5 and 
p9, then the associated composi te  fragment interaction pat tern matrix F for a more  
accurate macromolecular  density matrix P has the following form: 
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1 * * * * * * * * 

• 2 • • • • • • • • • • 

• • 3 • • • • • • • • • 

• * 4 * * * * * * 

• * * 5 * * * * * * * * 

• • • • • 6 • • • • • • • • • • 

• * * * * * 7 * * * * * * * * * 

• * * * * 8 * * * * * * 

• • • • • • 9 • • • • • 

• * * * * * * * * 1 0  * * * * * * 

• • • • • • • • • • 11 • • • • • 

• • • • • • • • 12 • • • 

• • • • • • 13 • • 

• • • • • • • • • 14 • • 

• • • • • • • • • • 15 • 

• • • • • • • • 16 

(46) 

One  m a y  r e ga rd  this compos i t e  f r agmen t  in t e rac t ion  p a t t e r n  m a t r i x  F as the 

b luep r in t  fo r  the cons t ruc t i on  o f  the m a c r o m o l e c u l a r  dens i ty  m a t r i x  P involving  

two  layers  o f  f r agmen t s  fo r  the c o o r d i n a t i o n  shell o f  each  p a r en t  molecu le  Mk. 

T h e  i n t e r p r e t a t i o n  o f  this pa t t e rn  is ana logous  to  tha t  for  the s impler ,  single- 

l ayer  case. Ea c h  b lock  o f  f r a g m e n t  dens i ty  m a t r i x  e lements  a long  the d i agona l  o f f  

o r ig ina te  f r o m  the f r a g m e n t  dens i ty  ma t r i x  p k  o f  the serial index k sh o w n  in the  
d iagonal .  Ea c h  b lock  o f  the final, m a c r o m o l e c u l a r  dens i ty  m a t r i x  P r ep resen ted  by  

an  of f -d iagona l  as ter isk  in r o w  i and  c o l u m n j  o f  the co m p o s i t e  f r a g m e n t  i n t e rac t ion  
p a t t e r n  m a t r i x  F is a sum o f  two con t r ibu t ions :  the r o w j  and  c o l u m n  i o f f -d iagonal  

b locks  o f  the  ith a n d j t h  a u g m e n t e d  f r a g m e n t  dens i ty  ma t r i ces  p i  and  PJ, con ta in -  

ing i n t e r ac t i on  c on t r i bu t i ons  f r o m  a tomic  orbi ta ls  be longing  to  the c o r r e s p o n d i n g  

j t h  a nd  ith nuc lea r  famil ies are  added  toge ther .  
In  prac t ice ,  no  ac tua l  a u g m e n t a t i o n  o f  mat r ices  is ca r r ied  out;  a s imple re- index-  

ing o f  n o n z e r o  m a t r i x  e lements  is a m o r e  efficient a l te rnat ive .  

T h e  sizes o f  t a rge t  and  pa r en t  molecules  are  typica l ly  ve ry  different ,  imply ing  

t ha t  b o t h  the c o m p o s i t e  f r a g m e n t  i n t e rac t ion  p a t t e rn  m a t r i x  F and  the  resul t ing  
m a c r o m o l e c u l a r  dens i ty  ma t r ix  P o b t a i n e d  us ing the A D M A  m e t h o d  are  r a t h e r  

sparse.  This  fac t  can  be explo i ted  when  s tor ing  these mat r ices  in a da tabase .  In  this 
con tex t ,  the  ac tua l  p a t t e r n  ob t a ined  in ou r  second  example ,  indica t ing  m a n y  con t r i -  

bu t ions ,  is s o m e w h a t  mis leading,  since ou r  " m a c r o m o l e c u l e "  is no t  m u c h  la rger  

t h a n  the pa r e n t  molecu les  Mk. 
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4. Summary 

Two new applications of the additive fuzzy electron density fragmentation prin- 
ciple are reported. The techniques are formulated within the ab initio Hartree- 
Fock quantum chemical computational framework. 

The first of the two techniques, the Adjustable Local Density Assembler or 
ALDA method, generates geometry-adjusted ab initio quality macromolecular 
electron densities directly, using fragment density matrices, basis set information, 
and nuclear coordinates. The method requires an ALDA fragment electron density 
matrix database. 

The second method, the Adjustable Density Matrix Assembler or ADMA 
method, is introduced for the generation of ab initio quality approximate density 
matrices for macromolecules. The method assembles fragment density matrices 
designed to fulfill a macromolecular compatibility condition. The ADMA method 
is suitable for generating macromolecular density matrices without the computa- 
tion of a macromolecular wavefunction. The ADMA method extends the applica- 
tions of the density matrix techniques of conventional quantum chemistry to 
macromolecules such as proteins. The simple treatment of small nuclear geometry 
variations is expected to improve the description of some of the vibrational and 
dynamic properties ofmacromolecules. 
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Note added inproof. A new method for the construction of projector matrices based 
on X-ray diffraction data has been developed recently by Massa, Huang and Karle 
[51]. 

References 

[1] D.R. Hartree, Proc. Cambridge Phil. Soc. 24 (1928) 111,426, ibid. 25 (1929) 225,310. 
[2] V. Fock, Z. Physik 61 (1930) 126. 
[3] C.C. Roothaan, Rev. Mod. Phys. 23 (1951) 69, ibid. 32 (1960) 179. 
[4] G.G. Hall, Proc. Roy. Soc. London A205 (1951) 541. 
[5] R. Carb6, L. Leyda and M. Arnau, Int. J. Quantum Chem. 17 (1980) 1185. 
[6] R. Carb6 and L1. Domingo, Int. J. Quantum Chem. 32 (1987) 517. 
[7] R. Carb6 and B. Calabuig, Comput. Phys. Commun. 55 (1989) 117. 
[8] R. Carb6 and B. Calabuig, Int. J. Quantum Chem. 42 (1992) 1681. 
[9] R. Carb6 and B. Calabuig, Int. J. Quantum Chem. 42 (1992) 1695. 

[10] R. Carb6, E. Besalfi, B. Calabuig and V. Vera, Adv. Quant. Chem. 25 (1994) 253. 



P. G. Mezey / Macromolcular density matrices and electron densities 167 

[11 ] E. Besal6, R. Carb6, J. Mestres and M. Sol~, Foundations and recent developments on molecular 
quantum similarity, in: Topics in Current Chemistry, Vol. 173, Molecular Similarity, exi. K. Sen 
(Springer-Verlag, Heidelberg, 1995). 

[12] E.E. Hodgkin and W.G. Richards, J. Chem. Soc. Chem. Commun. 1986 (1986) 1342. 
[13] E.E. Hodgkin and W.G. Richards, Int. J. Quantum Chem. 14 (1987) 105. 
[14] A. Good andW.G. Richards, J. Chem. Inf. Comp. Sci. 33 (1992) 112. 
[15] S. Leicester, R. Bywater and J.L. Fmney, J. Mol. Graph. 6 (1988) 104. 
[16] R. Bywater, in: Molecular Similarity and Reactivity: from Quantum Chemical to Phenomenologi- 

cal Approaches, ed. R. Carb6 (Kluwer, Dordrecht, The Netherlands, 1995). 
[17] D.L. Cooper and N.L. Allan, in: Molecular Similarity and Reactivity:from Quantum Chemical 

to Phenomenological Approaches, ed. R. Carb6 (Kluwer, Dordrecht, The Netherlands, 1995). 
[18] N.L. Allan and D.L. Cooper, in: Advances in Molecular Similarity, eds. R. Carb6 and 

P.G. Mezey (JAI Press, Greenwich, USA, to be published). 
[19] J. Cioslowski, S.T. Mixon, Can. J. Chem. 70 (1992) 443. 
[20] J. Cioslowski and A. Nanayakkara, J. Am. Chem. Soc. 115 (1993) 11213. 
[21] J. Cioslowski and B.B. Stefanov, Mol. Phys. 84 (1995) 707. 
[22] P.G. Mezey, Int. J. Quant. Chem. Quant. Biol. Syrup. 12 (1986) 113. 
[23] P.G. Mezey, J. Comput. Chem. 8 (1987) 462. 
[24] P.G. Mezey, J. Math. Chem. 2 (1988) 299. 
[25] P.G. Mezey, L Math. Chem. 2 (1988) 325. 
[26] P.G. Mezey, Shape in Chemistry: An Introduction to Molecular Shape and Topology (VCH 

Publishers, New York, 1993). 
[27] P.G. Mezey, Density domain bonding topology and molecular similarity measures, in: Topics in 

Current Chemistry, Vol. 173, Molecular Similarity, ed. K. Sen (Springer-Verlag, Heidelberg, 
1995). 

[28] P.G. Mezey, Methods of molecular shape-similarity analysis and topological shape design, in: 
Molecular Similarity in Drug Design, ed. P.M. Dean (Chapman & Hall - Blackie Publishers, 
Glasgow, U.K., 1995). 

[29] R.E. Christoffersen and G.M. Maggiora, Chem. Phys. Lett. 3 (1969) 419. 
[30] R.E. Christoffersen, L.L. Shipman and G.M. Maggiora, Int. J. Quantum Chem. 5 (1971) 143. 
[31] R.E. Christoffersen, D. Spangler, G.G. Hall and G.M. Maggiora, J. Am. Chem. Soc. 95 (1973) 

8526. 
[32] P.G. Mezey, Int. J. Quant. Chem. Quant. Biol. Symp. 14(1987) 127. 
[33] P.G. Mezey, Molecular surfaces, in: Reviews in Computational Chemistry, eds. K.B. Lipkowitz 

and D.B. Boyd (VCH Publ., New York, 1990). 
[34] P.G. Mezey, Three-dimensional topological aspects of molecular similarity, in: Concepts and 

Applications of Molecular Similarity, eds. M.A. Johnson and G.M. Maggiora (Wiley, New York, 
1990). 

[35] G.A. Arteca, N.D. Grant and P.G. Mezey, J. Comput. Chem. 12 (1991) 1198. 
[36] W. Yang, Phys. Rev. Lett. 66 (1991) 1438. 
[37] C. Lee andW. Yang, J. Chem. Phys. 96 (1992) 2408 
[38] P.D. Walker and P.G. Mezey, J. Math. Chem. 17 (1995) 203. 
[39] P.D. Walker and P.G. Mezey, J. Am. Chem. Soc. 115 (1993) 12423. 
[40] P.D. Walker and P.G. Mezey, Program MEDLA 93 (Mathematical Chemistry Research Unit, 

University of Saskatchewan, Saskatoon, Canada, 1993). 
[41 ] P.D. Walker an d P.G. Mezey, J. Am. Chem. Soc. 116 (1994) 12022. 
[42] P.D. Walker and P.G. Mezey, Canad. J. Chem. 72 (1994) 2531. 
[43] P.D. Walker and P.G. Mezey, J. Comput. Chem. 16 (1995) 1238. 
[44] P.G. Mezey, Program ALDA 95 (Mathematical Chemistry Research Unit, University of 

Saskatchewan, Saskatoon, Canada, 1995). 



168 P. G. Mezey / Macromolcular density matrices and electron densities 

[45] P.G. Mezey, Program ADMA 95 (Mathematical Chemistry Research Unit, University of 
Saskatchewan, Saskatoon, Canada, 1995). 

[46] P.G. Mezey, Local shape analysis of macromolecular electron densities, in: Computational 
Chemistry: Reviews and Current Trends, ed. J. Leszczynski (World Scientific, Singapore, in 
press). 

[47] R.S. Mulliken, J. Chem. Phys. 23 (1955) 1833,1841,2338,2343. 
[48] R.S. MuUiken, J. Chem. Phys. 36 (1962) 3428. 
[49] P.G. Mezey, to be published. 
[50] F.L. Pilar, Elementary Quantum Chemistry (McGraw-Hill, New York, 1968). 
[51 ] L. Massa, L. Huang and J. Karle, to be published. 


